首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143490篇
  免费   15677篇
  国内免费   17403篇
化学   73323篇
晶体学   1287篇
力学   10427篇
综合类   2153篇
数学   37357篇
物理学   52023篇
  2023年   1561篇
  2022年   2255篇
  2021年   3701篇
  2020年   3699篇
  2019年   3736篇
  2018年   3193篇
  2017年   3904篇
  2016年   4995篇
  2015年   4596篇
  2014年   6296篇
  2013年   11039篇
  2012年   7469篇
  2011年   8187篇
  2010年   7175篇
  2009年   9078篇
  2008年   9721篇
  2007年   10046篇
  2006年   8768篇
  2005年   7278篇
  2004年   6411篇
  2003年   6079篇
  2002年   5198篇
  2001年   4504篇
  2000年   4112篇
  1999年   3615篇
  1998年   3314篇
  1997年   2752篇
  1996年   2587篇
  1995年   2368篇
  1994年   2208篇
  1993年   1908篇
  1992年   1764篇
  1991年   1368篇
  1990年   1140篇
  1989年   989篇
  1988年   929篇
  1987年   726篇
  1986年   642篇
  1985年   812篇
  1984年   702篇
  1983年   371篇
  1982年   666篇
  1981年   870篇
  1980年   726篇
  1979年   705篇
  1978年   555篇
  1977年   460篇
  1976年   393篇
  1974年   189篇
  1973年   263篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
91.
Mildred Dresselhaus is known for her influential research on the physics of carbon. Her wide‐ranging influence as a physics teacher, although well‐known to her students, has been less thoroughly examined. Exploring how Dresselhaus grew into her role teaching solid state physics at MIT reveals much about how that subfield evolved.  相似文献   
92.
Thermal gas-phase reactions of the ruthenium-oxide clusters [RuOx]+ (x=1–3) with methane and dihydrogen have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. For methane activation, as compared to the previously studied [RuO]+/CH4 couple, the higher oxidized Ru systems give rise to completely different product distributions. [RuO2]+ brings about the generations of [Ru,O,C,H2]+/H2O, [Ru,O,C]+/H2/H2O, and [Ru,O,H2]+/CH2O, whereas [RuO3]+ exhibits a higher selectivity and efficiency in producing formaldehyde and syngas (CO+H2). Regarding the reactions with H2, as compared to CH4, both [RuO]+ and [RuO2]+ react similarly inefficiently with oxygen-atom transfer being the main reaction channel; in contrast, [RuO3]+ is inert toward dihydrogen. Theoretical analysis reveals that the reduction of the metal center drives the overall oxidation of methane, whereas the back-bonding orbital interactions between the cluster ions and dihydrogen control the H−H bond activation. Furthermore, the reactivity patterns of [RuOx]+ (x=1–3) with CH4 and H2 have been compared with the previously reported results of Group 8 analogues [OsOx]+/CH4/H2 (x=1–3) and the [FeO]+/H2 system. The electronic origins for their distinctly different reaction behaviors have been addressed.  相似文献   
93.
《Physics letters. A》2019,383(20):2370-2375
We consider a bosonic Josephson junction in the Bose-Hubbard two-mode approximation where some of the parameters are corrupted by physically meaningful noise processes and study the corresponding relaxation dynamics towards its equilibrium state. We show with numerical simulations that this model can essentially capture all the important features observed in a recent experiment regarding the relaxation dynamics in one-dimensional bosonic Josephson junctions, namely the damped oscillations of the population imbalance and the relative phase, as well as the large final coherence factor. We expect that this work will further motivate research about the origin of relaxation mechanism in these systems.  相似文献   
94.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
95.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   
96.
97.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
98.
The nonmetal-to-metal transition in dense fluid helium is discussed, which has been, in analogy to metallization of hydrogen, predicted as first-order plasma phase transition using chemical models for the equation of state and plasma composition. However, recent ab initio simulations performed for dense fluid helium indicate that this transition is continuous in the considered regime, without a density jump and latent heat as characteristic of a first-order phase transition. Implications for some astrophysical plasmas are discussed.  相似文献   
99.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号